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Three results on the flow of an infinitely conducting and inviscid fluid are pre- 
sented in this paper. The first result is that all steady flows with magnetic lines 
coincident with streamlines are reducible to flows without a magnetic field. The 
second result is on the establishment of a steady irrotational and current-free 
flow with coincident streamlines and magnetic lines. It throws some light on the 
controversy between Stewartson (1960) and Sears & Resler (1959) concerning the 
possibility of such a flow. The third result concerns the flow of a fluid through a 
circular cylinder of radius R into a point sink with strength m when the fluid 
carries a current of density j, at infinity. It is shown that the condition of uniform 
flow at infinity is impossible to maintain if a dimensionless number (kR)2 involving 
the current densityj, exceeds the value (3.831)2, and that the current has the 
effect of concentrating the flow near the centre line and of producing ring eddies 
which become longer and longer as (kR)2 is increased. The dimensionless number 

with a = h,/W, y = 2njO(p/4np)3 and h, = HO(p/47rp)3, 
in which w and W are the uniform angular velocity and the velocity at  infinity, Ho 
is the uniform longitudinal magnetic field at  infinity, p the density, p the magnetic 
permeability, and j, the current density at infinity. 

(kR)2 is defined to be I 2 ( 0  - a y )  R/ w (1 - .2) 12 

1. Preliminaries 
This paper deals with the flow of an inviscid, incompressible, and infinitely 

conducting fluid in a magnetic field. Except in $4, Cartesian co-ordinates 
xi (i = 1 , 2 , 3 )  will be used. The corresponding velocity components will be denoted 
by ui and the corresponding magnetic field components by Hi. As usual, the 
density of the fluid will be denoted by p, the pressure by p, the magnetic per- 
meability by p, the body force per unit mass by Xi, and the time by t .  The 
magnetic permeability is assumed constant. The equations of motion are 

p- Du, = --(p+-H2)+pxi+-Ha--, a P P 
Dt axi 8n 4n ax, 

and the magnetic-field equations are 

DHi aui 
- &-, 

Dt ax, 
I_- 

in which , H2 = B, Ha, ~a a oi = z'U,- 
ax, 
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and repeated indices in the same term indicate summation of the terms as the 
dummy index runs through 1 , 2  and 3. The ve&or forms of equations ( 1 )  and ( 2 )  
will be useful. These are 

\ 

D 
p-v Dt = -gradp+pX+pj x H, 4* = curlH, ( l a )  

Pa)  
aH i 
- = curl (v x H), at 

and 

in which v is the velocity, X the body force, H the field, and j the current density. 
The equation of continuity is 

DP aua -+p-  = 0, 
Dt ax, 

in which p need not be constant. Since the fluid is incompressible, 

DplDt = 0, 

and (3) can be written as au,px, = 0. 

There is also an equation of continuity of the magnetic field, which is 

(3) 

aH,lax, = 0. (6) 

This is in effect an initial condition which persists by virtue of equation (3a). 

2. Steady magnetically reinforced flows 
A steady magnetically reinforced flow is a steady flow in which the streamlines 

and magnetic lines are coincident. It will now be shown that, provided the fluid 
is inviscid, incompressible, and infinitely conducting, the totality of solutions for 
such flows is exactly the same as the totality of solutions for steady flows in the 
absence of a magnetic field. In  other words, a steady magnetically reinforced 
flow is equivalent to and has the same pattern as some steady flow of an ideal 
fluid (which may be non-homogeneous) in the absence of a magnetic field. Note 
that for an infinitely conducting fluid the magnetic lines move with the fluid. 
Hence if streamlines and magnetic lines are coincident far upstream in a steady 
flow, they coincide everywhere, except possibly in regions of closed streamlines. 

D/Dt = u,a/ax,, 

The above-stated theorem will now be proved. Since the flow is steady, 

and equations (l), ( 2 )  and (4)  become 

and 

The equations for streamlines are 
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the solutions of which are 

$(XI, z2 ,  x3) = c and X(Z1, x2, x3) = C'. (8) 

The intersections of the two families of surfaces represented by (8) as each of C 
and C' takes on different values are the streamlines, which are therefore imbedded 
in the $-surfaces (on which $ = constant) and x-surfaces. Since 

a@/ax, (i = 1,2 and 3)  

are the direction numbers for the normal to a $-surface, 

u,(ap/ax,) = 0. ( 9) 

Similarly, u,(ax/axa) = 0. (10) 

v = grad $ x grad x, ( 1 1 )  

The velocity is then given by 

for more detailed developments, see Yih (1957). But the development of (1 1 )  is 
very old, and the present writer certainly does not claim priority in its discovery. 

Since the streamlines and magnetic lines are coincident, the most generalt 
relationship between ui and H,. is$ 

Hi = h(@,X)ui? ( 1 2 )  

in which h is an arbitrary function of $ and x. Note that (2b) is then automati- 
cally satisfied, because both sides are equal to hu,(au,/ax,). The other terms on 
the right-hand side are ui u,(ah/ax,) and these are zero as a result of (9) and (10). 
Equation ( 1  b )  becomes, again by virtue of (9) and ( lo ) ,  

Note in passing that from either ( l b )  or ( l c )  the Bernoulli equation along a 
streamline 

&Juaua-(Pu/8n)HZ = -P-  ( P / ~ ~ ) H ~ - P Q + + ( $ ~ , x ) ,  (13) 

or 4pua21.,+p+pQ = C($,X), (14) 

can be derived, provided the body force has a potential s1. 

who took (with a slight difference in notation) 
Up to this point the development is the same as that given by Grad§ (1960), 

and 

and concluded that the resulting equations 

t The dependence of h only on $ and x is dictated by ( 5 )  and (6). 
1 This relationship was already recognized by Grad (1960), whose work will be discussed 

in the following paragraph. Goldsworthy (1961) also recognized it. But he took h to be 
constant in further discussion. 

3 I am indebted to my colleague W. W. Willmarth for calling my attention to Grad's 
paper after this work was done. 
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govern the flow of a non-homogeneous fluid in the absence of a magnetic field. 
However, the body force has been neglected in Grad’s equation, or (1 d). If the 
term pX, is included in (1 d) ,  his conclusion does not go through. Furthermore, 
if body force is indeed neglected, his conclusion does not go far enough. For we 
can define (Yih 1958) 

and by virtue of (4c) write ( I d )  and ( 5 )  as 
u; = (P*/PO)%, 

Po u;(au;/ax,) = - ap*px,, 

and auyax, = 0, 

thus reducing the equations to those governing the flow of an incompressible 
fluid of homogeneous density. The boundary conditions present no difficulty, as 
will be shown for the general case, in which body force is taken into account. 

Now let 

If  Q = 0, we take & / I & [  to be 1, although the value - 1 will do as well. By virtue 
of (9) and (lo), equations ( l c )  can be written as 

Furthermore, au;/ax, = o (17) 

u;(ap/ax,) = o (18) 

holds by virtue of ( 5 ) ,  (9) and (1 0 ) ,  and 

obviously holds by virtue of (4b). But (16)) (17) and (18) are the equations 
governing steady flows of an incompressible and inviscid fluid in the absence of 
a magnetic field. 

The boundary conditions need to be considered. If solid boundaries are present, 
the kinematic conditions at  these boundaries are identical for the original flow 
(us-field) as for the associated flow (ui-field). Dynamical boundary conditions 
in the original flow can always be translated into similar ones in the associated 
flow. 

The change of sign of Q in the field does not present any difficulty. Consider 
a surface S separating a region of positive Q from a region of negative Q .  On $he 
surface, Q = 0, and (P  + (P/8T) H2) + Pa = c, (19) 

corresponding to pt+pL2’ = c. (20) 

u;u; = 0 (21) 

The condition Q = 0 also corresponds to 

on S. Since the flow ui is not irrotational, (21) is not impossible. The two parts of 
the associated flow on opposite sides of S are all governed by (16)) (17) and (18), 
and on S ,  (20) and (21) hold. The sign of C (though not its magnitude) changes 
abruptly. But this does not violate the equality of 

at S and on both sides of S. 
P + ( P P 4  H 2  
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If h and p are constant and Q is zero all over the field, so that 

ui, = (IU./~TP)' Hi, (22) 
the equations of motion are automatically satisfied and the pressure p can be 
evaluated from ( 19). 

3. Establishment of irrotational and current-free flows 
Equation (1  a )  indicates that if the magnetic field is current-free, irrotational 

flow is possible. If, further, the streamlines and magnetic lines are coincident, 
(2a )  indicates that the magnetic field is steady. The velocity field may be steady 
or not; both steady and unsteady irrotational flows are possible, so long as v is 
parallel to H, and j is zero. 

For convenience, flows for which streamlines and magnetic lines are coincident 
and both the velocity field and the magnetic field are irrotational will be called 
P-flows. Steady P-flows past cylindrical bodies have been studied by Sears & 
Resler (1959), who discussed not only such flows but also flows in which v is not 
parallel to H (see also Sears 1961). We are concerned here only with 12-flows. 
Sears & Resler did not state how their steady I2-flow was established, and Stewart- 
son (1960), assumingt that establishment from an initial uniform field was 
implied in the work of Sears & Resler, showed that if U, is the velocity of the fluid 
and H, the magnetic field strength at  infinity and if 

the final steady flow is a slug flow predicted with a simple development by Yih 
(1959) for an infinitely conducting fluid. We shall show here by a very simple 
argument that if H is intially uniform and has the single component Hl = H,, and 
if the fluid has only one component u1 = U ( t )  at infinity, which increases from 
zero to U,, steady 12-flows cannot be the final state. On the other hand, if a 
current-free magnetic field identical with the one in a steady 12-flow is set up 
before U ( t )  increases (or before the body moves), the final steady flow must be an 
12-flow. If the body is a sphere, such a field can be set up by superposing on the 
uniform magnetic field H, a field due to a magnetic dipole at  the centre of the 
sphere, with proper strength and the axis pointing to a direction opposite to that 
of H,. The dipole can of course be replaced by the sort of surface current Sears & 
Resler described. In the following we shall consider the motion relative to the 
body. It can be shown that the kinematical problem is quite the same, whether 
the absolute or the relative motion is considered, although this may not be 
immediately evident as in the non-magnetic case (see the discussion in the 
Appendix). 

The discussion will not be limited to two-dimensional flows. First, note that 
flows governed by (1))  ( 2 ) ,  (4), (5) and (6) are all reversible. Suppose that in 
-T < t < 0 the flow is established as U ( t )  increases from zero to U,, and the 
velocity and magnetic fields are given by and Hi. If U(t )  now decreases from 
U, to  zero according to the reversed schedule 

~ ~ ( ~ T P I I u . ) '  < H m ,  (23) 

U ( t )  = - U (  - t )  (t  > O ) ,  (34) 
t However, he was probably aware that an 12-flow can be established from an initially 

streaming magnetic field. See also a further paper by him (1963). 
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then for t > 0, the governing equations are exactly satisfied if 

ui(t) = -u&( - t ) ,  H,(t) = Hi( - t ) .  (25) 

For the effect of the discontinuity in velocity implied in (35), see the Appendix. 
Now consider the establishment of flow in the period -T < t < 0, with a 

streaming current-free magnetic field already at  t = - T ,  and with U(t )  varying 
from zero a t  t = - T to U, at t = 0. The flow is initially current-free. Hence the 
term pj x H in (la) is zero, and the initial motion will be irrotational, with the 
streamlines coinciding with the magnetic lines. Then ( 2  a )  states that the magnetic 
field will be stationary, and therefore will continue to be current-free. Further 
increase of U(t )  will then not affect the flow pattern, and will give a fluid velocity 
at  every point proportional to the velocity of the final steady flow, the coefficient 
of proportionality being U(t)/U,. Thus the final 12-flow will be reached through 
intermediate 12-flows. Now if, starting from the steady flow so obtained, we 
reverse the flow according to (24), not only do we know that ( 2 5 )  will satisfy the 
governing equations, but exactly the same argument as just put forth will show 
that the original (at t = -T) quiescent state with a streaming current-free 
magnetic field, and no other state, will be reached at t = T. If it had been possible 
to establish the steady state of 12-flow at t = 0 from an initial quiescent state with 
a uniform magnetic field HI = H,, H, = 0 = H3, it  should have been possible to 
recover it according to ( 2 5 )  as U ( t )  varies from U, to zero according to (24) in the 
interval T 2 t 2 0, contrary to the result establishedabove. Hence it is impossible 
to establish a steady 12-flow from a quiescent state with a uniform magnetic field. 
Although it would be more realistic to consider real fluids of finite viscosity and 
conductivity, discussion of the question of establishment within the framework 
of inviscid and infinitely conducting fluids by the use of the simple idea of 
reversibility perhaps throws some light on the matter. 

4. A current-induced jet 
Long (1960) has studied the steady axisymmetric motion of an infinitely 

conducting fluid. Cylindrical co-ordinates r ,  0, and x will be used. The velocity 
components in the directions of increasing r ,  0, and z will be denoted by u, v, 
and w. The components of the magnetic field will be denoted by H,, H,, and H,. 
Following Long, we shall use 

(f, 9, h) = (P/477P)* (Hr7 H,, ( 2 6 )  

From the equations of continuity for the flow and magnetic fields, 

ur = -$-s, 

f r  = -A,, 
wr = $-,, 
hr = A,, 

in which $- is the Stokes stream function, A the corresponding function for the 
magnetic field, and subscripts denote partial differentiation. From (2a),  with 
the left-hand side equal to zero, Long was able to show that 

and 
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with A' indicating dA/d$. Equation (39) shows that projections of the stream- 
lines and magnetic lines coincide in the ( r ,  z )  plane. Furthermore, from the 
O-equation in (1 a), again for steady flow, he was able to show 

vr - A'gr = L($). (31 )  

Finally, from the other two equations of motion Long showed that 

Now (29) indicates that, although the magnetic lines and streamlines do not 
necessarily coincide, their projections in the ( r ,  z )  plane do. Thus the flow is 
magnetically reinforced as far as the r and x components of the velocity and of the 
magnetic field are concerned. From the results obtained in $ 2 ,  we expect that 
(32 )  can be considerably simplified by a transformation similar to the second 
equation in (15). Realizing that A' is really just the (,u/47rp)f h in (15), we make 
the transformation 

which reduces ( 3 2 ) ,  after it has been multiplied by (1 

d Y  = ( l - ~ I ' ~ ) * d $ ,  ( 3 4 )  

to 

1 1dA 1 d B  
r 2 d Y  2 d Y  

Y22+Yw--Yr+-- +-- r4 = N(Y)r2,  (35) 

in which N = M (  1 -A")-$. 

That ( 3 5 )  is considerably simpler than (32 )  is quite evident. 
Long gave two explicit linear cases of (32 ) .  The first is for the conditions 

v, = 0, w, = const. go = 0, h, = const. at z = infinity. In this case (32 )  reduces to 

$z#+$n--(l/r)$r = 0. 

The second is for the same conditions a t  infinity except v, = 0, which is replaced 
by vo = wr (solid rotation). In  this case 

Long stated that other linear cases could be found by a procedure he used to deal 
with the vorticity equation for stratified flow in a gravitational field (Long 1958). 
But that procedure was quite labourious even for the equation to which it was 
applied, and will certainly be much more so if one attempts to apply it to (32 ) .  
Furthermore, it cannot be used to find the linear cases exhaustively. We shall use 
the same approach as used by Yih (1960) for discovering the linear cases of steady 
stratified flows in a gravitational field. Starting with (35 ) ,  the possible linear 
cases are simply the cases in which 

- c Y + d ,  N = mY+n, 
1 dB _- l d A - a Y + b ,  - 2dyp-  

2 d Y  (37 )  

in which the lower-case letters are constants. Given any A($), the first two 
equations in (37 )  specify L($) and K($) ,  and therefore vo and go. With (37 )  sub- 
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stituted in (35), the upstream condition is then determined by solving Y as a 
function of r far upstream. The function $ is then also known as a function of r. 

For instance, if a = k2, b = 0, c = 0, d = 0, and m = 0 for any A', (35) becomes 

Yzz + Y,, - ( l /r)  Y, + k 2 Y  = nr2, (38) 

which gives YP, = pr2, ,8 = n/@. (39) 

If, further, 9 = A'v, (40) 

(41) 

then B = 0 ,  and far upstream 

L = (1  - A'2) vr, (1  - A'2) v2r2 = uY2 = (k/r2)2, 

the latter of which specifies vo (at z = infinity) if A' is specified, upon use of (39). 
The solution of (38) is of the form 

m 

n=l 
Y = /3r2+ AnrJl(knr)exp{+ , / ( k ~ - P ) x } ,  (42) 

in which Jl(kn R)  = 0 if the flow is within a cylinder of radius R. 
We shall present an interesting case of an axisymmetric flow in a cylinder of 

radius R into a point sink (of flow as well as electricity) at  x = 0. Since the flow is 
symmetric with respect to the plane z = 0 it  is sufficient to consider the lower half 
of the cylinder. The case described by 

w = W ,  h = h,, v = wr, g = yr = 27rj0(p/47rp)+r (43) 

at z = -a corresponds to a uniform flow, a uniform magnetic field, a solid 
rotation, and a uniform current density j, at z = - CO. For definiteness, let 

A' = h,/W = a < 1. 

The conditions at infinity give $ = &Wr2 and B = const. so that B' = 0. As 
to A ,  

so that 

2(w - $, 
W 

vr - A'gr = (w - oly) r2 = 

0-oly 2 
A = 4(-117) ( l - o l y $ z .  

Since A' = const. we can use (32) directly, giving 

(44) 

(45) 

in which the right-hand side has been determined from the upstream condition, 

k = 2(0 - CXY)/ W (  1 - a'). and 

The solution of (46) is 
00 

$ = -  W r 2 +  AnrJ,(Enr)exp (k:-k2)tx,  
2 n=, 

in which 

(47) 

The coefficients A ,  are determined from the condition that $ = 4 WR2 at z = 0. 
The first eigenvalue El R is 3.831. If 

k2R2 < (3.831)2, (50) 
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the upstream condition is satisfied by (48). The solution is similar to the one 
obtained by Long (1956) for a rotating fluid. It is characterized by a jet more and 
more concentrated along the centreline as k2R2 increases toward (3.831)2, and by 

\ 

FIGURE 1. A sketch of the flow pattern for a current-induced jet. The plane z = 0 can 
either be a solid boundary or a plane of symmetry separating the flow shown from its 
mirror image described by (48). 

a ring eddy on each side of the plane z = 0. The mirror image of the flow described 
by (48) is shown in figure 1. If 

k2R2 > (3*831)2, (51) 

the upstream condition is no longer satisfied by (48), and vortex sheets (and 
possibly current sheets) can be expected to occur, in analogy with stratified 
flow (see Debler 1959). 

Now the form of k2 given in (47)  allows one to say that k2 will be large if 
(1) ayR is large relative to W (strong current), 
( 2 )  wR is large relative to W (strong rotation), 
(3) a is near unity. 
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It is interesting that between the limiting cases (1) and ( Z ) ,  the effects of rotation 
and current can be compensative, and the signs of ay (or aj,) and w are all im- 
portant in the intermediate range. Item (3) is pertinent to the discussion given 
by Long (1960) at the end of his paper. We have assumed the upstream condition 
to be undisturbed. This corresponds to a2 < 1 according to Long’s conclusion. 
No explanation has been given as to why the blocking effect, which occurs at 
large k2, should be critical as a2 approaches unity. An explanation for the case 
discussed by Long and described by (36) here is as follows: As a2 approaches 1, 
W approaches h,, which is the phase velocity c and the group velocity cg of waves 
at  zero wavelength. (For a < 1, cy > c; see Long 1960.) Therefore as a2 + 1 from 
below, even the short waves are able to travel upstream. The shadow effect or 
blocking effect is then dominant. This explanation for the phenomenon governed 
by (36) is applicable also to the phenomenon under study here, governed by (46). 
Mathematically, the homogeneous part of (46) for large k2 is similar to the 
equation governing short acoustic waves. The shadow effect of high pitch in 
sound is well known, and is mathematically analogous to the blocking effect of 
high k2 in the present problem. 

Note that the jet phenomenon can be caused byj, alone, with w = 0, whereas 
without an electrical current no such phenomenon can occur without rotation, as 
indicated by (36). 

This work has been jointly sponsored by the National Science Foundation and 
the Army Research Office (Durham). 
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Appendix 
The equivalence of the absolute motion and the motion relative to the body is 

based on (2) or (2 a). If ui is the ith component of the velocity relative to the body, 
then the absolute velocity has the components 

- U(t)+u,, u2 and us, 
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in which U ( t )  is the speed of the body, which moves in the direction of decreasing 
xl. Now if ui is proportional to Hi, (2a)  becomes, after utilization of (6), 

aH aH _- u-=o 

which states that the magnetic field moves with the body. If it is initially irrota- 
tional, it  will continue to be. The irrotationality of the flow then follows from the 
fact that j = 0, and the Helmholtz-Kelvin conservation theorems. 

However, displacement current has so far not been considered, and my col- 
league, Dr J.D.Murray, has pointed out to me that the sudden reversal of 
velocity proposed in Q 3 may result in infinite displacement currents. If displace- 
ment currents are to be included, (1 a )  should be replaced by 

at ax , 

a(eE) 
at 

4nj = curl H - __- 

in which E is the dielectric constant. The Ohm’s law is still 

j = a(E+pv x H), (A 2) 

in which cr is the electrical conductivity. The Maxwell equation 

aH 
/ L  - = - curl E 

at 

is still valid. Eliminating E and j from the three preceding equations, we have 

aH a2H 
- = curl(vxH)-TcurlcurlH-~ep-, 
at at2 

if E is assumed constant. Now for an infinitely conducting fluid, 9 = 0, and the 
last two terms vanish provided V2H and a2H/at2 are not infinite. Then (2a )  is 
recovered, and the argument in $ 3 can again be applied to reach the conclusion of 
the persistence of the 12-state. 

To ensure that a2H/at2 be not infinite, it  is necessary to have a smooth reversal 
instead of the sudden reversal proposed in Q 3, if displacement currents are taken 
into account. To do so, assume that an 12-flow is established in any way what- 
soever in the interval - T < t < - t,, in which U ( t )  increases from zero to U,, and 
let U ( t )  decrease smoothly but otherwise in any arbitrary manner from U, to  
zero in the interval - t, < t < 0. At t = 0 we have a quiescent fluid with a stream- 
ing irrotational magnetic field, according to the arguments in $3.  We then apply 
(25). On the one hand, the reversibility of the flow and the magnetic field demand 
that the initial (t = - T )  condition be retrieved at t = T .  On the other hand, the 
I2-state must persist from the moment t = - t,, as argued in the preceding para- 
graph and in $3.  Hence a contradiction would be reached if the 12-flow had been 
established from an initially uniform field at t = - T.  Note that in this argument 
the smooth slowing down in -tl < t < 0 is introduced merely to remove the 
discontinuity which would be implied in (35) if t ,  were taken to be zero, as in Q 3. 
The argument is quite unimpaired by extending the history of the motion to 
t = 0 before reversing it. 


